Carlson, B.E., A.A. Lacis, C.M. Colose, A. Marshak, W. Su, and S. Lorentz, 2019. Spectral signature of the biosphere: NISTAR finds it in our solar system from the Lagrangian L-1 point. Geoph. Res. Lett.,

Carn, S.A., N.A. Krotkov, B.L. Fisher, C. Li, and A.J. Prata, 2018. First observations of volcanic eruption clouds from the L1 Earth-Sun Lagrange point by DSCOVR/EPIC, Geophys. Res. Lett.,

Carn, S.A., L. Clarisse and A.J. Prata (2016), Multi-decadal satellite measurements of global volcanic degassing, J. Volcanol. Geotherm. Res., 311, 99-134, doi:10.1016/j.jvolgeores.2016.01.002.

Carn, S.A. and N.A. Krotkov (2016), UV Satellite Measurements of Volcanic Ash, In: S. Mackie, K. Cashman, H. Ricketts A. Rust, and I.M. Watson (eds.), Volcanic Ash: Hazard Observation, Elsevier, pp. 217-231, doi:10.1016/B978-0-08-100405-0.00018-5.

Carn, S.A. (2016), On the detection and monitoring of effusive eruptions using satellite SO2 measurements, In: Harris, A.J.L., T. de Groeve, F. Garel and S.A. Carn (editors),Detecting, Modeling and Responding to Effusive Eruptions, Geological Society of London, Special Publications, 426, doi:10.1144/SP426.28.

Christian K., J. Wang, C. Ge, D. Peterson, E. Hyer, J. Yorks, and M. McGill. 2019. Radiative forcing and stratospheric warming of pyrocumulonimbus smoke aerosols: first modeling results with multi‐sensor (EPIC, CALIPSO, CATS) views from space, Geoph. Res. Lett., DOI: 10.1029/2019GL082360

Davis A., N. Ferlay, Q. Libois, A. Marshak, Y. Yang and Q. Min, 2018. Cloud information content in EPIC/DSCOVR's oxygen A- and B-band channels: A physics-based approach. J. Quant. Spectrosc. Radiat. Transfer, 220, 84–96, doi:10.1016/j.jqsrt.2018.09.006.

Davis A., G. Merlin, L. Labonnote, J. Riedi, C. Cornet, P. Dubuisson, N. Ferlay, Q. Min, Y. Yang and A. Marshak, 2018. Cloud information content in EPIC/DSCOVR's oxygen A- and B-band channels: An optimal estimation approach. J. Quant. Spectrosc. Radiat. Transfer, 216, 6–16, doi:10.1016/j.jqsrt.2018.05.007.

Delgado-Bonal, A., A. Marshak, Y. Yang, and L. Oreopoulos, 2020. Daytime variability of cloud fraction from DSCOVR/EPIC observations, Journal of Geophysical Research: Atmospheres, 125, e2019JD031488, doi://

Doelling, D., C. Haney, R. Bhatt, B. Scarino, A. Gopalan (2019). The Inter-Calibration of the DSCOVR EPIC Imager with Aqua-MODIS and NPP-VIIRS, Remote Sens. 2019, 11,1609; doi:10.3390/rs11131609

Doelling, D., K. Khlopenkov, C. Haney, R. Bhatt, B. Bos, B. Scarino, A. Gopalan and D. S. Lauretta, 2019. Inter-Calibration of the OSIRIS-REx NavCams with Earth-Viewing Imagers. Remote Sens., 11, 2717; doi:10.3390/rs11222717.

Feldman, D.R., W. Su, and P. Minnis, 2021. Sub-diurnal to interannual frequency analysis of observed and modeled reflected shortwave radiation from Earth. Geoph. Res. Lett.,

Frouin R., J. Tan, D. Ramon, B. Franz, H. Murakami, 2018. Estimating photosynthetically available radiation at the ocean surface from EPIC/DSCOVR data, Proc. SPIE 10778, Remote Sensing of the Open and Coastal Ocean and Inland Waters, 1077806 (24 October 2018); doi: 10.1117/12.2501675.

Gao, B.-C., R.-R. Li, and Y. Yang. 2019. Remote Sensing of Daytime Water Leaving Reflectances of Oceans and Large Inland Lakes from EPIC onboard the DSCOVR Spacecraft at Lagrange-1 Point. Sensors, 19 (5), 1243 [10.3390/s19051243]

Gao, M. (616/SSAI), Zhai, P., Yang, Y. (613), Hu, Y. (NASA LaRC), 2019: "Cloud remote sensing with EPIC/DSCOVR observations: a sensitivity study with radiative transfer simulations," Journal of Quantitative Spectroscopy and Radiative Transfer, 230 (2019), 56-60,

Geogdzhaev, I.V., A. Marshak, and M. Alexandrov, 2021. Calibration of the DSCOVR EPIC visible and NIR channels using multiple LEO radiometers, Frontiers in Remote Sens., 2, doi: 10.3389/frsen.2021.671933

Geogdzhayev, I.V. and A. Marshak, (2018). Calibration of the DSCOVR EPIC visible and NIR channels using MODIS and EPIC lunar observations, Atmos. Meas. Tech.,

Hao, D., G.R. Asrar, Y. Zeng, Q. Zhu, J. Wen, Q. Xiao, and M. Chen, 2019. Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations. Remote Sensing of Environment, 232, 111320. doi: 10.1016/j.rse.2019.111320

Hao, D., G.R. Asrar, Y. Zeng, Q. Zhu, J. Wen, Q. Xiao, and M. Chen, 2020. DSCOVR/EPIC-derived global hourly and daily downward shortwave and photosynthetically active radiation data at 0.1° × 0.1° resolution. Earth Syst. Sci. Data, 12, 2209–2221, 2020.

Herman, J., A. Cede, L. Huang, J. Ziemke, O. Torres, N. Krotkov, M. Kowalewski, K. Blank, 2020: Global Distribution and 14-Year Changes in Erythemal Irradiance, UV Atmospheric Transmission, and Total Column Ozone 2005–2018 Estimated from OMI and EPIC Observations, Atmos. Chem. Phys.

Herman J., G. Wen, A. Marshak, K. Blank, L. Huang, A. Cede, N. Abuhassan, and M. Kowalewski, 2018. Reduction in Earth Reflected Irradiance during the Eclipse of 21 August 2017. Atmos. Meas. Tech., 11, 4373-4388,

Herman, J.R., L. Huang, R.D. McPeters, J. Ziemke, A. Cede, and K. Blank (2018). Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole Earth as viewed by DSCOVR spacecraft from the earth-sun Lagrange-1, Atmos. Meas. Tech., 11, 177-194,

Holdaway, D. and Y. Yang, 2016: Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part II): Cloud Coverage. Remote Sens., 8(5), 431, doi:10.3390/rs8050431.

Holdaway, D. and Y. Yang, 2016: Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part I): Earth’s Radiation Budget. Remote Sens. 2016, 8(2), 98; doi:10.3390/rs8020098.

Jiang, J.H., A.J. Zhai, J. Herman, C. Zhai, R. Hu, H. Su, V. Natraj, J. Li, F. Xu and Y.L. Yung, 2018: Using Deep Space Climate Observatory Measurements to Study the Earth as an Exoplanet. The Astron. J., 156:26,

Kostinski, A., A. Marshak, and T. Varnai, 2021. Deep space observations of terrestrial glitter, Earth and Space Science, 8, e2020EA001521

Li, J.-Z., S. Fan, P. Kopparla, C. Liu, J. Jiang, V. Natraj, and Y. Yung, 2019. Study of terrestrial glints based on DSCOVR observations. Earth and Space Sci., 10.1029/2018EA000509.

Lyapustin, A., S. Go, S. Korkin, Y. Wang, O. Torres, H. Jethva and A. Marshak, A., 2021. Retrievals of Aerosol Optical Depth and Spectral Absorption from DSCOVR EPIC. Frontiers in Remote Sensing, 2, doi: 10.3389/frsen.2021.645794.

Marshak, A., J. Herman, A. Szabo, K. Blank, A. Cede, S. Carn, I. Geogdzhaev, D. Huang, L.-K. Huang, Y. Knyazikhin, M. Kowalewski, N. Krotkov, A. Lyapustin, R. McPeters, K. Meyer, O. Torres and Y. Yang, 2018. Earth Observations from DSCOVR/EPIC Instrument. Bulletin Amer. Meteor. Soc. (BAMS), 9, 1829-1850,

Marshak, A., T. Varnai and A. Kostinski, 2017. Terrestrial glint seen from deep space: oriented ice crystals detected from the Lagrangian point. Geoph. Res. Lett., 44, doi:10.1002/2017GL073248.

Marshak, A. and A. Ward, 2018. Summary of DSCOVR EPIC and NISTAR Science Team Meeting. The Earth Observer, 30, 6, 16-22.

Marshak, A. and Y. Knyazikhin, 2017: The spectral invariant approximation within canopy radiative transfer to support the use of the EPIC/DSCOVR oxygen B-band for monitoring vegetation. J. Quant. Spectrosc. Radiat. Trans., 191, 7-12, doi:10.1016/j.jqsrt.2017.01.015.

Meyer, K., Y. Yang, and S. Platnick, 2016: Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC), Atmos. Meas. Tech., 9, 1785-1797, doi:10.5194/amt-9-1785-2016.

Molina García, V., S. Sasi , D.S. Efremenko and D. Loyola, 2019. Improvement of EPIC/DSCOVR Image Registration by Means of Automatic Coastline Detection. Remote Sensing, 11(15), 1747.

Molina García, V., S. Sasi, D.S. Efremenko, A. Doicu, and D. Loyola, 2018. Radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements. J. Quant. Spectrosc. Radiat. Transf., 123 228–240. doi:10.1016/j.jqsrt.2018.03.014

Molina García, V., S. Sasi, D.S. Efremenko, A. Doicu, and D. Loyola, 2018. Linearized radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements. J. Quant. Spectrosc. Radiat. Transf., 213, 241–251.

Pisek, J., S.K. Arndt, A. Erb, E. Pendall, C. Schaaf, T.I. Wardlaw, W. Woodgate, Y. Knyazikhin, 2021: Exploring the Potential of DSCOVR EPIC Data to Retrieve Clumping Index in Australian Terrestrial Ecosystem Research Network Observing Sites. Frontiers in Remote Sensing, 2, doi: 10.3389/frsen.2021.652436

Sasi, S., V. Natraj, V. Molina-Garcia, D.S. Efremenko, D. Loyola, and A. Doicu, 2020: Model Selection in Atmospheric Remote Sensing with an Application to Aerosol Retrieval from DSCOVR/EPIC, Part 1: Theory, Remote Sensing, 12, 22, 10.3390/rs12223724.

Song, W., Y. Knyazikhin, G. Wen, A. Marshak, M. Mõttus, G. Yan, B. Yang, B. Xu, T. Park, C. Chen, Y. Zeng, G. Yan, X. Mu and R. Myneni, 2018. Implications of Whole-Disc DSCOVR EPIC Spectral Observations for Estimating Earth’s Spectral Reflectivity Based on Low-Earth-Orbiting and Geostationary Observations. Remote Sens., 2018, 10, 1594, doi:10.3390/rs10101594. Direct Download.

Su, W., P. Minnis, L. Liang, D. P. Duda, K. V. Khlopenkov, M.M. Thieman, Y. Yu, A. Smith, S. Lorentz, D. Feldman, and F. P. J. Valero, 2020. Determining the daytime Earth radiative flux from National Institute of Standards and Technology Advanced Radiometer (NISTAR) measurements. Atmos. Meas. Tech., 13, 429–443,

Su, W., L. Liang, D. R. Doelling, P. Minnis, D. P. Duda, K. V. Khlopenkov, M.M. Thieman, N.G. Loeb, S. Kato, F. P. J. Valero, H. Wang, and F. G. Rose, 2018. Determining the shortwave radiative flux from Earth polychromatic imaging camera. J. Geophys. Res., 123,

Tian Q., Q. Liu, J. Guang, L. Yang, H. Zhang, C. Fan, Yahui Che, and Z. Li, 2020: The Estimation of Surface Albedo from DSCOVR EPIC, Remote Sensing , V. 12; doi:10.3390/rs12111897.

Torres, O., P.K. Bhartia, G. Taha, H. Jethva, S. Das, P. Colarco, N. Krotkov, A. Omar, C. Ahn, 2020: Stratospheric Injection of Massive Smoke Plume from Canadian Boreal Fires in 2017 as seen by DSCOVR‐EPIC, CALIOP and OMPS‐LP Observations, JGR.

Varnai, T., A. Kostinski, and A. Marshak, 2019. Deep space observations of sun glints from marine ice clouds. IEEE Remote Sens. Lett., doi: 10.1109/LGRS.2019.2930866.

Weber M., D. Hao, G. R. Asrar, Y. Zhou, X. Li and M. Chen, 2020: Exploring the Use of DSCOVR/EPIC Satellite Observations to Monitor Vegetation Phenology, Remote Sensing, 12, 2384, doi:10.3390/rs12152384.

Wen, G., A. Marshak, S. Tsay, J. Herman, U. Jeong, N. Abuhassan, R. Swap, and D. Wu, 2020: Changes in Surface Broadband Shortwave Radiation Budget during the 2017 Eclipse, J. Atmos. Chem. Phys.,

Wen G., A. Marshak, W. Song, Y. Knyazikhin, M. Mõttus, and D. Wu, 2019. A relationship between blue and near-IR global spectral reflectance and the response of global average reflectance to change in cloud cover observed from EPIC on DSCOVR. Earth and Space Science, 6.

Xu, X., J. Wang, Y. Wang, J. Zeng, O. Torres, J. Reid, S. Miller, J.V. Martins, and L. Remer (2019), Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space, Atmos. Meas. Tech., 12, 3269–3288, 2019,

Xu, X., J. Wang, Y. Wang, J. Zeng, O. Torres, Y. Yang, A. Marshak, J. Reid, and S. Miller (2017), Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: First results from EPIC/DSCOVR at Lagrange-1 point, Geophys. Res. Lett., 44, 7544–7554, doi:10.1002/2017GL073939

Yang, B., Knyazikhin, Y., Mõttus, M., Rautiainen, M., Stenberg, P., Yan, L., Chen, C., Yan, K., Choi, S., Park, T., & Myneni, R.B. (2017). Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis. Remote Sensing of Environment, 198, 69-84. doi:10.1016/j.rse.2017.05.033

Yang, K. and Liu, X., 2019: Ozone profile climatology for remote sensing retrieval algorithms, Atmos. Meas. Tech., 12, 4745–4778,

Yang, W., A. Marshak, T. Varnai and Y. Knyazikhin (2018). EPIC spectral observations of the variability in Earth's global reflectance. Remote Sens., 10(2), 254,

Yang, Y., A. Marshak, J. Mao, A. Lyapustin, J. Herman, 2013: A Method of Retrieving Cloud Top Height and Cloud Geometrical Thickness with Oxygen A and B bands for the Deep Space Climate Observatory (DSCOVR) Mission: Radiative Transfer Simulations. J. Quant. Spectrosc. Radiat. Trans.,122, 141-149, doi:10.1016/j.jqsrt.2012.09.017.

Yang, Y., K. Meyer, G. Wind, Y. Zhou, A. Marshak, S. Platnick, Q. Min, A.B. Davis, J. Joiner, A. Vasilkov, D. Duda, and W. Su, 2019: Cloud Products from the Earth Polychromatic Imaging Camera (EPIC) observations: algorithm description and initial evaluation, Atmos. Meas. Tech., 12, 2019-2031, [1]

Yin B., Q. Min, E. Morgan, Y. Yang, A. Marshak, and A. Davis, 2020. Cloud top pressure retrieval with DSCOVR-EPIC oxygen A and B bands observation. Atmos. Meas. Tech. 13, 1–18,

Zhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., & Li, Z. (2020). The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111686,

Zhou, Y., Y. Yang, M. Gao, and P-W. Zhai, 2020: "Cloud detection over snow and ice with oxygen A- and B-band observations from the Earth Polychromatic Imaging Camera (EPIC)." Atmos. Meas. Tech.,